

LGSOWG #27 - Special Reports

Landsat 7 Global Archive

Terry Arvidson Lockheed Martin Missiles and Space Senior System Engineer in Landsat 7 Project Office

Long Term Plan for Data Acquisition

A "Long Term Plan" is being developed to define the acquisition pattern for the Landsat 7 mission in order to:

- create and periodically update a global archive ...
 - LTP specifies frequency of acquisition for each scene over the five year mission
- of sun-lit, ...
 - LTP filters out scenes with inadequate lighting for the time of year
- substantially cloud-free images ...
 - LTP assigns climatology-based maximum allowable cloud cover for each scene by time of year
- **→** of land areas.
 - LTP is based on the subset of the Worldwide Reference System (WRS) that has been classified as land

Define "Periodic Refresh"

- Each Worldwide Reference System (WRS) scene in the land data base has associated with it a set of "refresh parameters":
 - Start and End Dates of the Refresh period
 - Number of successful acquisitions desired during that period
 - Minimum gap between successful acquisitions
- These parameters are used by the Scheduler to prioritize each scene's need for refresh.
- Derivation of these parameters is the key to an effective refresh strategy.

Derivation of Refresh Parameters

- Some scenes change significantly during the year; others do not.
 - Deserts change little and can be imaged reliably.
 - Tropical rain forests change little, but can only be imaged reliably without cloud interference during the dry season.
 - Agricultural areas are often most interesting during "green up" and harvest seasons.
- The "seasonality index" of various land cover types was determined using mean and standard deviation NDVI values from a 10-year AVHRR data set. Refresh rates are based on this index.
- The science background for this approach is presented in "Terrestrial Vegetation Seasonality in the Landsat-7 Long Term Acquisition Plan", by Dr. Sam Goward, et al., UMCP.

(NDVI = Normalized Differenced Vegetation Index, AVHRR = Advanced Very High Resolution Radiometer, UMCP = University of Maryland, College Park)

Defining "Sun-lit"

- The Scheduler has a daily solar elevation angle available for the center of each scene to be scheduled.
- A <u>minimum</u> Sun angle will be used to "deselect" scenes determined as too dark for acquisition. (Parameterized currently set at 85P zenith angle)
- "Night" imaging requests are generally not part of the Global Archive refresh Long Term Plan
 - Will be considered as individual requests
 - Exception is monitoring of active volcanos, as defined by Landsat Science Team, via routine acquisition of night imagery

ETM+ Band Gain Settings

- Analog/Digital converters for each spectral band provide two commandable settings: high gain and low gain
- Long term plan bundles the band gain settings as follows:
 - Bands 1, 2, and 3 set to the same value
 - Band 4 set independently
 - Bands 5 and 7 set to the same value
 - Band 6 in Format 1 always set to Low; Format 2 always set to High
 - Band 8 (Pan) always set to Low
- Scene entropy values used to determine gain settings
 - Low gain and high gain entropies calculated for each scene
 - Gain assignment based on the highest entropy value
 - The science background for this approach is in the process of publication, by Dr. Sam Goward, et al., UMCP.

(UMCP = University of Maryland, College Park)

Defining "Substantially Cloud-free"

- ISCCP climatology data set was used to determine nominal expected cloud cover values for each scene for each month
- Daily cloud predicts from National Weather Service are used to avoid imaging very cloudy areas by altering scene priority:
 - Boosted if predict is better than nominal expected value
 - Reduced if predict is worse than nominal expected value
- An Automated Cloud Cover Assessment (ACCA), as well as other quality checks, is performed during Level 0R processing, recorded in scene metadata, and sent to scheduler
- ACCA is compared to nominal expected cloud cover value
 - If better than nominal, scene is labeled as successfully acquired
 - If equal to or worse than nominal, scene is labeled as unacquired and a candidate for scheduling at the next opportunity

(ISCCP = International Satellite Cloud Climatology Project)

Defining the Earth's Landmass

- Chose every WRS scene containing land within its boundaries:
 - All continents, with Antarctica starting at minimum ice pack limits
 - Arctic islands
 - Inland seas and bays to extent that the WRS scene contains any land
 - Unnamed islands, shoals, reefs, rocks, banks
 - Within vast shallow coastal areas (<200m deep)
 - Scenes close to continental coasts and well within the shallows
- Our current land data base contains approximately 14,000 WRS scenes
 - about <u>850</u> land scenes on an average day
- Flywheel scenes (up to 2) also included

LTP Structure

- LTP comprises four files:
 - nominal cloud cover (each WRS / monthly values / 1 year)
 - default solar zenith maximum angle (single value = 85Þ)
 - default band gain values (each WRS / monthly values / 1 year)
 - global archive requests (each WRS / 8 years)
- Good initial cuts of each now in the Scheduler data base and undergoing review
 - expect revisions via internal UMCP review
 - expect revisions via results of LTP characterization runs

(UMCP = University of Maryland, College Park)

Fine Tuning The Process

- Algorithm for scheduling ETM+ imaging is built on a database of scene parameters from the Long Term Plan, each adjustable. They include:
 - Refresh rate
 - Landmass definition
 - Sun angle maximums

- Cloud cover thresholds
- Band gain settings

- We get feedback
 - on the performance of the predicted cloud cover versus the calculated cloud cover for each acquired scene
 - from Landsat 7 Science Team and Image Assessment System
 - from analyzing scheduler performance reports
- Emphasis is on optimizing acquisition performance, and quality and usefulness of archive contents.

Backup Chart

Default Gain Settings for Night Imaging

- BAND: 1 2 3 4 5 6 6 7 8 GAIN: H H H H L L H L L
- Bands 1-4 are set to H, the most likely value for day scenes
- Bands 5 & 7 set to L, per Science Team analysis results
- Band 8 (Pan) set to L, the preset value for all day scenes